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bstract

Backpropagation artificial neural network (BPNN) was utilized to predict membrane performance. The network was used to predict and compare
umic substance (HS) retention and membrane fouling with previously obtained experimental data. BPNN simulation results show high network
eliability, if the network is implemented correctly. The difference between the predicted and experimental data was lower than 5%. Low number
f training data input has been shown to hinder the learning process. A high number of training data input has lead to over-fitting or memorization
f the training data set, reducing the networks predictability. The number of neurons in the hidden layers needs to be chosen carefully to obtain

reliable network. This paper shows that a lower number of neurons result in low reliability, while a higher number of neurons leads to data

ver-fitting. The best performance was obtained with 2-10 neurons for HS and heavy metals agglomeration and 5-15 neurons for HS coagulation
ith and without heavy metals.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Mathematical models derived from physical descriptions
nd understanding of the membrane process to characterize
he membranes to predict membrane performance and foul-
ng are conventionally undertaken using mathematical models
1]. These models are mathematically complex, computationally
xpensive and they ideally require a very detailed knowledge of
he filtration process. Efficient alternatives are required to pre-
ict the process performance by simulating available data and
xtending it to unavailable data [2,3]. Artificial neural networks
ANNs) operate like black box models. They offer an attractive
lternative to conventional black box models in dealing with
omplex processes. They are capable of modeling highly com-
lex and non-linear systems with many interrelated parameters.
hey do not require detailed information about the physical
arameters of the system. Instead, they use available data to

redict the relationship between input and output parameters
2,4]. ANN with enough number of neurons can theoretically
pproximate any function to any level of accuracy [5,6]. Recent
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reakthrough in the computing industry promoted the use of
NN models in desalination and membrane processes [7–11].
An ANN is composed of a number of highly interconnected

rocessing elements (neurons) working in parallel to solve a
pecific problem. ANN cannot be programmed to perform a
pecific task. It requires selective examples to learn from oth-
rwise the network will be unreliable and time consuming. The
ays the neurons interact with each other determine the opera-

ion of the ANN (connection formula). There are several types
f ANNs such as feed-forward networks (perceptron network)
nd feedback networks (recurrent network) [12,13]. Feedback
etworks can have neurons signals traveling in both directions
y introducing loops in the network enabling them to route
ack to previous neurons. Recurrent networks are typically used
or classification problems with binary pattern vectors (pattern
ecognition) [14,15]. Feed-forward ANN allows signals to travel
n one direction: from input to output. Feed-forward ANNs tend
o be straightforward networks that associate inputs with out-
uts if there is no feedback (loops). They are extensively used
or function approximation [16].
The feed-forward network is commonly used with an error
orrection algorithm such as backpropagation. The standard
ackpropagation neural network (BPNN) algorithm relies on
search technique (e.g. gradient descent), in which the network

mailto:nidal.hilal@nottingham.ac.uk
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(4)
Fig. 1. Cross flow filtration model.

eights are changed along the negative of the gradient of the per-
ormance function [17]. The learning process of BPNN is based
n iterative weight adjustments. Information from inputs is fed
orward through the network to optimize the weights between
eurons. The BPNN compares output and target values and
odify the weight values according to a specific learning algo-

ithm to reduce the overall error. The modified weights are then
ropagated backwards into the system. This forward–backward
rocess is carried out for each epoch (set of training patterns used
o compute the global error) and is repeated until the difference
etween predicted output and target value reach an accepted
ange [12,18].

This study investigates the use of BPNN to predict membrane
etention and fouling. A BPNN model is designed and different
rchitectures are compared to determine the best architecture
o use in data prediction. When the architecture was chosen,

comparison between previously obtained experimental data
nd BPNN data was undertaken. Previous experimental data
ncludes agglomeration of humic substances (HS) and heavy

etals, HS coagulation and HS and heavy metals coagulation.

. Experimental methodology

Membrane filtration experiments were carried out in a labora-
ory scale filtration cell. Schematic diagram of the experimental
et-up is shown in Fig. 1. Complete description of the materi-
ls used and experimental procedure are presented in previous
rticles [19,20]. Complete description of the materials and oper-
ting conditions used during the experimental part of this study
re presented in a previous article [21].

HS retention was measured using [22]:

= 1 − Cp

Cb
(1)

here R is retention, Cp is permeate concentration (mg/l) and
b is bulk concentration (mg/l). Cp and Cb were measured using
otal Organic Carbon (TOC) Analyzer. Membrane fouling is
alculated using [21]:

ouling =
(

1 − Jv

J0

)
× 100 (2)
here ‘Fouling’ is membrane fouling during the period of the
ltration (%), J0 is pure water flux (l/m2 h) and Jv is solution
ermeate flux (l/m2 h).

F
[

ering Journal 141 (2008) 27–34

. Modeling

.1. Artificial neural network

A successful BPNN requires internal parameters determina-
ion such as network architecture and initial weights to meet
he required performance [23,24]. A poorly designed network
ill result in unreliable results. Finding a suitable architecture

nd the corresponding weights of the network is a complex task
ue to the lack of theoretical parameters or optimal values. This
esults in the need for trial and error approach using different
nitializations and architectures [25,26]. The architecture of a
ypical BPNN is presented in Fig. 2. Matlab 7.3 was used to
onstruct and simulate the BPNN. The BPNN is composed of a
et of elements of calculation (layers) connected to each other.
ig. 2 shows a 3-layer BPNN with n, m and p as the number of

nput, hidden and output layers respectively. Neurons in the hid-
en and the output layers calculate their inputs by performing
weighted sum of the outputs they received from the previ-

us layer. Their outputs however are calculated by transforming
heir inputs using a transfer function. The most widely used
ransfer functions are the log-sigmoid (logsig) transfer function
Eq. (3); Fig. 3A), the tan-sigmoid (tansig) transfer function (Eq.
4); Fig. 3B) and the linear (purelin) transfer function (Fig. 3C).
ogsig function produces outputs in the range of 0 to 1, tansig

unction produces outputs in the range of −1 to +1 and purelin
unction produces outputs in the range of −∞ to +∞ [27,28].

(x) = 1
−x

(3)
ig. 2. Architecture of a typical backpropagation artificial neural network BPNN
17].
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ig. 3. Typical transfer functions used in BPNN: (A) logsig, (B) tansig and (C)
urelin.

The BPNN used in this study is based on the following equa-
ion:

k = S

⎛
⎝ m∑

j=1

WjkxS

(
n∑

i=1

WijXi

)⎞⎠ (5)

here Ok are the output values, Xi are the input values of the
etwork, Wij are the connection weights between the input layer
nd the hidden layer, Wjk are the connection weights between
he hidden layer and the output layer and S is transfer function.

The input each node in the previous layer (Xi) is multiplied
y an adjustable connection weight (Wij). At each node, the
eighted input signals are summed and a bias value (Wj) is

dded. The bias is an extra input added to the neurons, which has
constant value of 1 and treated like other connection weights.
his combined input (Aj) is then passed through the transfer

unction (S) to produce the output node (Oj) as illustrated in
ig. 2. The output of one node contributes to the input to the
odes in the next layer.

There are usually four steps involved in ANN modeling: (1)
ssembly of dataset, defining the input and output data, (2)
eciding the network architecture, (3) training (network learn-
ng) and (4) simulating the network response to new inputs.

.2. Principle component analysis

Conventional BPNN suffers from slow convergence to local
nd global minima and from random settings of initial values of
eights, which reduces the prediction accuracy of the network.
uzzy hybrid neural networks such as principle component anal-
sis (PCA) were introduced to increase the efficiency of neural
etworks [29–32]. PCA is used when the dimension of the input
ector is large and consists of redundant values. PCA reduces
he dimension of the input vectors to the BPNN by producing
ncorrelated data input and by eliminating the components that
ontribute the least to the variations of the data input. It orders

he resulting dimensions so that the data, which contribute the

ost, come first. Therefore, the training period of the neural
etwork is decreased. PCA is a well-established technique for
eature extraction and dimensionality reduction [33].

p
a

s
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A number of input vectors produced using PCA were intro-
uced into the BPNN. The PCA-BPNN efficiency was assessed
y comparing it with membrane retention and fouling experi-
ental results.

. Results and discussion

.1. BPNN optimization

The quality of different network architectures is measured
sing average absolute error (AE), maximum error (ME) and
orrelation coefficient (R). Maximum error is the highest differ-
nce between predicted and target results. The network was run
0 times to average out any possible errors or unexpected values.
he overall coefficient factor (R), the average absolute error (AE)
nd the maximum error (ME) for the simulation were 0.97, 0.02
nd 0.07 respectively. The training datasets used in this study
ere randomly arranged to ensure the absence of data fitting,

.e. overriding of BPNN predictions. The five input vectors used
n HS and heavy metals agglomeration BPNN training were

embrane type, salinity level, HS concentration, heavy metals
oncentration and trans-membrane pressure. While the six input
ectors for HS coagulation excluded heavy metals concentration
nd included polyelectrolyte type and concentration. Finally, HS
nd heavy metals coagulation BPNN simulation included heavy
etals concentration as well as polyelectrolyte type and con-

entration providing a total of seven input vectors. Membrane
etention was used as the output vector to test the network.

The results of training data set, number of neurons in hidden
ayers, training algorithm and PCA input vectors variations on
PNN prediction are shown in Tables 1–3. Results showed an
ptimum training data set range, where lower or higher than
ptimum data input points provided unreliable results as shown
n Runs 1–3 in Table 1, Runs 1–5 in Tables 2 and 3. These
esults suggest that lower number of training data hinder the
earning process and high number of training data can depress
he generalizing abilities of the network through over-fitting or

emorization of the training data set [12].
The performance of varying the number of neurons was

ssessed as shown in Runs 2, 4–6 in Table 1 and Runs 3, 6–8 in
ables 2 and 3. HS and heavy metals agglomeration simulation
chieved high prediction accuracy at 2-10 neurons. Prediction
ccuracy decreased with further increase in number of neurons
o 15. The reduction in prediction accuracy is due to the network

emorizing the training set instead of trying to generalize and
redict, i.e. data over-fitting [12]. HS coagulation and HS and
eavy metals coagulation simulation results showed low predic-
ion accuracy at 2 neurons. All other neurons variations (5-15)
roduced high prediction accuracy. Low number of neurons pre-
ents the BPNN from appropriately learning and approximating
he target values.

Runs 2, 7, 8 in Table 1 and Runs 3, 9, 10 in Tables 2 and 3 illus-
rate the effect of using different training algorithms on network

erformance. All studied training algorithms (trainlm, trainscg
nd trainbr) showed high prediction accuracy.

Runs 2, 9–11 in Table 1 and Runs 3, 11–13 in Tables 2 and 3
how the effect of input vectors produced using PCA on BPNN
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Table 1
HS and heavy metals ANN optimization: initial 5 input vectors, 108 data input set points, 30 predicted set points, 0.0001 performance goal, 500 epochs and using
tansig transfer function

Run Architecture

PCA input vectors Training set point Training algorithm No. of neurons R ME AE

1 – 40 Trainlm 5-1 0.68 0.15 0.02
2 – 60 Trainlm 5-1 0.98 0.04 0.01
3 – 80 Trainlm 5-1 0.95 0.07 0.01
4 – 60 Trainlm 2-1 0.98 0.09 0.03
5 – 60 Trainlm 10-1 0.98 0.04 0.01
6 – 60 Trainlm 15-1 0.87 0.11 0.04
7 – 60 Trainscg 5-1 0.97 0.03 0.01
8 – 60 Trainbr 5-1 0.99 0.04 0.01
9 2 60 Trainlm 5-1 0.57 0.12 0.05

10 3 60 Trainlm 5-1 0.84 0.10 0.05

Table 2
HS coagulation ANN optimization: initial 6 input vectors, 428 data input set points, 160 predicted set points, 0.0001 performance goal, 500 epoch and using tansig
transfer function

Run Architecture

PCA input vectors Training set point Training algorithm No. of neurons R ME AE

1 – 140 Trainlm 5-1 0.79 0.10 0.04
2 – 160 Trainlm 5-1 0.94 0.04 0.01
3 – 180 Trainlm 5-1 0.97 0.04 0.01
4 – 200 Trainlm 5-1 0.98 0.03 0.01
5 – 220 Trainlm 5-1 0.86 0.09 0.02
6 – 180 Trainlm 2-1 0.66 0.24 0.14
7 – 180 Trainlm 10-1 0.96 0.04 0.01
8 – 180 Trainlm 15-1 0.96 0.04 0.01
9 – 180 Trainscg 5-1 0.97 0.04 0.01

10 – 180 Trainbr 5-1 0.97 0.04 0.01
11 3 180 Trainlm 5-1 0.69 0.12 0.05
1
1

p
n
i
v

s

T
H
a

R

1
1
1
1

2 4 180 Trainlm
3 5 180 Trainlm

rediction. BPNN prediction accuracy increased with increasing

umber of input vectors. Low numbers of input vectors were
nsufficient to produce reliable BPNN results; while high input
ectors produced reliable results compared to the normal BPNN

i
r
H

able 3
S and heavy metals coagulation ANN optimization: initial 7 input vectors, 222 data

nd using tansig transfer function

un Architecture

PCA input vectors Training set point Training alg

1 – 60 Trainlm
2 – 80 Trainlm
3 – 100 Trainlm
4 – 140 Trainlm
5 – 160 Trainlm
6 – 100 Trainlm
7 – 100 Trainlm
8 – 100 Trainlm
9 – 100 Trainscg
0 – 100 Trainbr
1 4 100 Trainlm
2 5 100 Trainlm
3 6 100 Trainlm
5-1 0.79 0.09 0.03
5-1 0.94 0.04 0.02

imulation. HS and heavy metals agglomeration required 4 PCA

nput vectors from the original 5 input vectors, HS coagulation
equired 5 PCA input vectors from the original 6 vectors, and
S and heavy metals coagulation required 6 PCA input vectors

input set points, 100 predicted set points, 0.0001 performance goal, 500 epoch

orithm No. of neurons R ME AE

5-1 0.74 0.19 0.04
5-1 0.96 0.06 0.02
5-1 0.98 0.04 0.01
5-1 0.97 0.05 0.01
5-1 0.81 0.12 0.04
2-1 0.55 0.27 0.14
10-1 0.96 0.04 0.02
15-1 0.94 0.07 0.01
5-1 0.99 0.04 0.02
5-1 0.99 0.03 0.02
5-1 0.66 0.17 0.09
5-1 0.86 0.11 0.05
5-1 0.97 0.05 0.02
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ig. 4. BPNN and PCA-BPNN performance in predicting HS retention in HS
nd heavy metals agglomeration experiments using P005F membrane at initial
oncentration of 5 mg/l heavy metals: (A) 10,000 ppm NaCl and (B) 25,000 ppm
aCl.

rom the original 7 vectors to produce comparable results to
he normally operated BPNN. The results show that the dataset
ed into PCA had little redundancy, which can be removed to
ncrease the speed of network conversion.

.2. HS retention BPNN simulation

On the basis of the considerations described in Section 4.1, a
PNN and a PCA-BPNN were chosen to compare their pre-
iction with HS retention determined experimentally. Fig. 4
ompares BPNN and PCA-BPNN predicted values to HS and
eavy metals agglomeration experimental results using simula-
ion Runs 2 and 11 in Table 1. The predicted values are within
ood agreement with the experimental values. HS retention was
.75, 0.75 and 0.73 at experimental, BPNN and PCA-BPNN
alues, respectively, using P005F membrane at initial feed con-
entration of 25,000 ppm NaCl, 10 mg/l HS and 5 mg/l heavy
etals.
Fig. 5 compares BPNN and PCA-BPNN predicted values

Runs 3 and 13 in Table 2) with HS coagulation experimen-
al results. Similar to previous results, the predicted values are
ithin good agreement with the experimental values. HS reten-

ion determined using BPNN, PCA-BPNN and experimental
esults using P005F membrane at initial feed concentration of
5,000 ppm NaCl, 10 mg/l HS and 2 mg/l PDADMAC concen-

ration were 0.89, 0.91 and 0.91, respectively.

Fig. 6 compares BPNN and PCA-BPNN predicted values
sing simulation Runs 3 and 13 in Table 3 with HS and heavy
etals coagulation experimental results. The predicted values

o
w
v
n

S coagulation experiments using P005F membrane at initial concentration
f 2 mg/l PDADMAC: (A) 10,000 ppm NaCl, (B) 25,000 ppm NaCl and (C)
5,000 ppm NaCl.

re within good agreement with the experimental values. HS
etention determined using BPNN, PCA-BPNN and experimen-
al results using P005F membrane at initial feed concentration of
5,000 ppm NaCl, 10 mg/l HS, 5 mg/l heavy metals and 2 mg/l
DADMAC concentration were 0.91, 0.91 and 0.92, respec-

ively.

.3. Membrane fouling BPNN simulation

The simulation used in Section 4.2 is repeated to com-
are BPNN and PCA-BPNN prediction with membrane fouling
etermined experimentally. All conditions are kept unchanged
rom Section 4.2 except using purelin transfer function instead

f tansig. Tansig produces outputs in the range of −1 to +1,
hile logsig produces outputs in the range of 0 to 1. In all pre-
ious simulations, using logsig or purelin instead of tansig did
ot improve the prediction accuracy of the network. Membrane
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Fig. 6. BPNN and PCA-BPNN performance in predicting HS retention in HS
and heavy metals coagulation experiments using P005F membrane operating at
3 bar and initial concentration of 5 mg/l heave metals: (A) 10,000 ppm NaCl and
(B) 25,000 ppm NaCl.

Fig. 7. BPNN and PCA-BPNN performance in predicting membrane fouling
in HS and heavy metals agglomeration experiments using P005F membrane
at initial concentration of 5 mg/l heavy metals: (A) 10,000 ppm NaCl and (B)
25,000 ppm NaCl.

Fig. 8. BPNN and PCA-BPNN performance in predicting membrane fouling
i
o
3

f
t
o

u
r
t
3
t
2

v
e
v
u
a
c

n HS coagulation experiements using P005F membrane at initial concentration
f 2 mg/l PDADMAC: (A) 10,000 ppm NaCl, (B) 25,000 ppm NaCl and (C)
5,000 ppm NaCl.

ouling results have values higher than 1. Purelin is the only
ransfer function that can be used at this range. Purelin produces
utputs in the range of −∞ to +∞.

Fig. 7 compares BPNN and PCA-BPNN predicted val-
es with HS and heavy metals agglomeration experimental
esults. The predicted values are within good agreement with
he experimental values. Membrane fouling was 34.4, 34.0 and
4.7% at experimental, BPNN and PCA-BPNN values, respec-
ively, using P005F membrane at initial feed concentration of
5,000 ppm NaCl, 10 mg/l HS and 5 mg/l heavy metals.

Figs. 8 and 9 compare BPNN and PCA-BPNN predicted
alues to HS coagulation with and without heavy metals
xperimental results. Similar to previous results, the predicted

alues are within good agreement with the experimental val-
es. Membrane fouling determined using BPNN, PCA-BPNN
nd experimental results using P005F membrane at initial feed
oncentration of 25,000 ppm NaCl, 10 mg/l HS, 5 mg/l heavy
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Fig. 9. BPNN and PCA-BPNN performance in predicting membrane fouling in
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S and heavy metals experiments coagulation using P005F membrane operating
t 3 bar and initial concentration of 5 mg/l heave metals: (A) 10,000 ppm NaCl
nd (B) 25,000 ppm NaCl.

etals and 2 mg/l PDADMAC concentration were 38.5, 38.5
nd 38.0%, respectively.

. Conclusions

Artificial neural network (ANN) can be a successful tool in
embrane performance prediction, if developed efficiently. The

eveloped BPNN produced high reliability; R-value exceeded
.95 in all results. Training dataset results show that at low num-
er of training dataset the learning process is hindered. A high
umber of training dataset can depress the generalizing abilities
f the ANN through over-fitting or memorization of the train-
ng data set, reducing the networks predictability. In addition,
umber of neurons in hidden layers need to be chosen care-
ully to obtain a reliable network. Principle component analysis
PCA) can increase ANN simulation speed, albeit with a slight
eduction in efficiency.
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